Journal Papers
Rueckert, E.; Kappel, D.; Tanneberg, D.; Pecevski, D; Peters, J. (2016). Recurrent Spiking Networks Solve Planning Tasks, Nature PG: Scientific Reports, 6, 21142, Nature Publishing Group.   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Rueckert, E.; Camernik, J.; Peters, J.; Babic, J. (2016). Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control, Nature PG: Scientific Reports, 6, 28455.   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Rueckert, E.A.; Neumann, G.; Toussaint, M.; Maass, W. (2013). Learned graphical models for probabilistic planning provide a new class of movement primitives, Frontiers in Computational Neuroscience, 6, 97.   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Rueckert, E.A.; d'Avella, A. (2013). Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems, Frontiers in Computational Neuroscience, 7, 138.   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Rueckert, E.A.; Neumann, G. (2012). Stochastic Optimal Control Methods for Investigating the Power of Morphological Computation, Artificial Life.   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]
 
Conference and Workshop Papers
Tanneberg, D.; Peters, J.; Rueckert, E. (2017). Online Learning with Stochastic Recurrent Neural Networks using Intrinsic Motivation Signals, Proceedings of the Conference on Robot Learning (CoRL).   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Rueckert, E.; Nakatenus, M.; Tosatto, S.; Peters, J. (2017). Learning Inverse Dynamics Models in O(n) time with LSTM networks, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Tanneberg, D.; Peters, J.; Rueckert, E. (2017). Efficient Online Adaptation with Stochastic Recurrent Neural Networks, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Stark, S.; Peters, J.; Rueckert, E. (2017). A Comparison of Distance Measures for Learning Nonparametric Motor Skill Libraries, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Kohlschuetter, J.; Peters, J.; Rueckert, E. (2016). Learning Probabilistic Features from EMG Data for Predicting Knee Abnormalities, Proceedings of the XIV Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON).   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Modugno, V.; Neumann, G.; Rueckert, E.; Oriolo, G.; Peters, J.; Ivaldi, S. (2016). Learning soft task priorities for control of redundant robots, Proceedings of the International Conference on Robotics and Automation (ICRA).   See Details [Details]   BibTeX Reference [BibTex]

Sharma, D.; Tanneberg, D.; Grosse-Wentrup, M.; Peters, J.; Rueckert, E. (2016). Adaptive Training Strategies for BCIs, Cybathlon Symposium.   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Weber, P.; Rueckert, E.; Calandra, R.; Peters, J.; Beckerle, P. (2016). A Low-cost Sensor Glove with Vibrotactile Feedback and Multiple Finger Joint and Hand Motion Sensing for Human-Robot Interaction, Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN).   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Tanneberg, D.; Paraschos, A.; Peters, J.; Rueckert, E. (2016). Deep Spiking Networks for Model-based Planning in Humanoids, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Azad, M.; Ortenzi, V.; Lin, H., C.; Rueckert, E.; Mistry, M. (2016). Model Estimation and Control of Complaint Contact Normal Force, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Calandra, R.; Ivaldi, S.; Deisenroth, M.;Rueckert, E.; Peters, J. (2015). Learning Inverse Dynamics Models with Contacts, Proceedings of the International Conference on Robotics and Automation (ICRA).   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Rueckert, E.; Mundo, J.; Paraschos, A.; Peters, J.; Neumann, G. (2015). Extracting Low-Dimensional Control Variables for Movement Primitives, Proceedings of the International Conference on Robotics and Automation (ICRA).   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Paraschos, A.; Rueckert, E.; Peters, J; Neumann, G. (2015). Model-Free Probabilistic Movement Primitives for Physical Interaction, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Rueckert, E.; Lioutikov, R.; Calandra, R.; Schmidt, M.; Beckerle, P.; Peters, J. (2015). Low-cost Sensor Glove with Force Feedback for Learning from Demonstrations using Probabilistic Trajectory Representations, ICRA 2015 Workshop on Tactile and force sensing for autonomous compliant intelligent robots.   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Rueckert, E.; Mindt, M.; Peters, J.; Neumann, G. (2014). Robust Policy Updates for Stochastic Optimal Control, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Rueckert, E.A.; d'Avella, A. (2013). Learned Muscle Synergies as Prior in Dynamical Systems for Controlling Bio-mechanical and Robotic Systems, Abstracts of Neural Control of Movement Conference (NCM), Conference Talk, pp.27--28.   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

Rueckert, E.A.; Neumann, G. (2011). A study of Morphological Computation by using Probabilistic Inference for Motor Planning, Proceedings of the 2nd International Conference on Morphological Computation (ICMC), pp.51--53.   See Details [Details]   Download Article [PDF]   BibTeX Reference [BibTex]

  

zum Seitenanfang